metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Benjamin J. Coe,^a* Naomi R. M. Curati,^a Simon R. Grabowski,^a Peter N. Horton^b and Michael B. Hursthouse^b

^aDepartment of Chemistry, University of Manchester, Manchester M13 9PL, England, and ^bEPSRC National Crystallography Service, School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England

Correspondence e-mail: b.coe@man.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.007 Å Disorder in solvent or counterion R factor = 0.060 wR factor = 0.128 Data-to-parameter ratio = 13.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

cis-Bis(2,2'-bipyridyl- $\kappa^2 N, N'$)chloro(1-phenyl-4,4'-bipyridinium- $\kappa N^{1'}$)ruthenium(II) bis(hexafluorophosphate)

The crystal structure of the title compound, [RuCl- $(C_{16}H_{13}N_2)(C_{10}H_8N_2)_2$](PF₆)₂, is described. Although related compounds are known to display nonlinear optical (NLO) properties, the present salt crystallizes in the centrosymmetric space group $P2_1/c$, so is not expected to show bulk NLO effects.

Received 27 August 2004 Accepted 24 September 2004 Online 9 October 2004

Comment

Investigations into new molecular materials having nonlinear optical (NLO) properties are important for the development of emerging optoelectronic and photonic technologies (Bosshard et al., 1995; Nalwa & Miyata, 1997). Recent studies in this field have involved a wide range of organotransition metal complexes, which can show very pronounced NLO effects (Di Bella, 2001; Coe, 2004). Previous studies from our laboratory have included ruthenium(II) ammine complexes of N-arylated pyridinium ligands, such as N-phenyl-4,4'-bipyridinium (PhQ⁺; Coe et al., 1998, 2002; Coe, Jones et al., 2003). The creation of potentially useful quadratic NLO materials requires the optimization of both molecular and macroscopic properties. Active chromophores must be arranged noncentrosymmetrically for bulk quadratic NLO effects, such as frequency doubling (second harmonic generation, SHG), to be observed.

We have recently studied a series of complex salts containing *cis*-[Ru(NH₃)₄(L)₂]⁴⁺ (L = PhQ⁺ *etc.*), which have strongly two-dimensional molecular NLO responses (Coe, Harris & Brunschwig, 2003). The investigation of related compounds is clearly of interest, and readily accessible targets include species in which the ammine ligands are replaced by the classical chelating 2,2'-bipyridyl (bpy) ligand. The new compound, (I), was synthesized as an intermediate on the route to *cis*-[Ru(bpy)₂(PhQ⁺)₂]⁴⁺, by the reaction of *cis*-RuCl₂(bpy)₂·2H₂O (Lay *et al.*, 1986) with [PhQ⁺]PF₆ (Coe *et al.*, 2000).

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved The complex salt, (I), shows an intense broad visible absorption band at $\lambda_{\text{max}} = 498 \text{ nm}$ in acetonitrile. This absorption is attributable to $d \rightarrow \pi^*$ metal-to-ligand charge-

transfer (MLCT) transitions from the Ru-based HOMO to the LUMOs localized on the bpy and PhQ⁺ ligands. PhQ⁺ is expected to be a stronger electron acceptor than bpy, so it is likely that the low-energy tail of the MLCT band corresponds to Ru \rightarrow PhQ⁺ excitations. Such low-energy MLCT bands are typically associated with large molecular quadratic NLO responses (Di Bella, 2001; Coe, 2004). Cyclic voltammetric studies reveal a reversible Ru^{III/II} wave at $E_{1/2} = 0.88$ V versus Ag–AgCl, together with several irreversible ligand-based reduction processes, the first of which has an $E_{\rm pc}$ value of -0.63 V versus Ag–AgCl (most likely attributable to a PhQ^{+/0} process).

The molecular structure of the complex cation in (I) is as indicated by ¹NMR spectroscopy, with an approximately octahedral metal centre and a *cis* arrangement of the bpy ligands (Fig. 1). The PhQ⁺ ligand is highly twisted, with a dihedral angle of 37.5 (3)° defined by the ring planes N1/C1–C5 and N2/C9/C10/C6–C8, and an angle of 47.0 (3)° between the planes N2/C9/C10/C6–C8 and C11–C16. Smaller twists between the pyridyl and pyridinium rings of PhQ⁺ have been observed in the compounds *trans*-[Ru(NH₃)₄(PTZ)(PhQ⁺)]-(PF₆)₃·Et₂O (PTZ = S-coordinated phenothiazine; Coe *et al.*, 1998) and *trans*-[RuCl(pdma)₂(PhQ⁺)](PF₆)₃·MeCN [pdma = 1,2-phenylenebis(dimethylarsine); Coe *et al.*, 2000], whilst *fac*-[Re(CO)₃(*L*–*L*)(PhQ⁺)](PF₆)₂ (*L*–*L* = *N*,*N'*-bis-isopropyl-1,4-diazabutadiene) also shows a highly twisted ligand structure (Busby *et al.*, 2004).

The crystal packing of (I) is of interest with regard to quadratic NLO properties. Unfortunately, (I) adopts the centrosymmetric space group $P2_1/c$ and is therefore not expected to display bulk NLO effects. Nevertheless, it is quite possible that metathesis of the hexafluorophosphate counteranions may cause the complex cations to adopt a more favourable crystal structure.

Experimental

A solution of cis-RuCl₂(bpy)₂·2H₂O (100 mg. 0.192 mmol) and [PhQ⁺]PF₆ (280 mg, 0.740 mmol) in degassed 2:1 ethanol/acetone (60 ml) was heated at reflux in the dark under Ar for 2.5 h. The resulting red-purple solution was reduced in volume on a rotary evaporator, and addition of aqueous NH₄PF₆ produced a purple precipitate, which was filtered off, washed with water and dried. Excess [PhQ⁺]PF₆ was removed by washing several times with methanol to afford a dark-purple solid. Yield 102 mg (55%). The product (29 mg) was further purified by vapour diffusion of diethyl ether into a concentrated acetone solution, giving 22 mg of darkpurple crystals. Analysis calculated for C₃₆H₂₉ClF₁₂N₆P₂Ru: C 44.48, H 3.01, N 8.65%; found: C 44.50, H 2.86, N 8.51%. ¹H NMR $(300 \text{ MHz}, \text{CD}_3\text{COCD}_3, \text{ p.p.m.}): 10.10 (1\text{H}, d, J = 5.7 \text{ Hz}, \text{ bpy H}^6),$ $9.52 (2H, d, J = 7.0 \text{ Hz}, C_5H_4N), 9.11 (2H, br s, C_5H_4N), 8.80 (4H, d, J =$ 6.9 Hz, C₅H₄N), 8.73 (1H, d, J = 8.2 Hz, bpy H³), 8.67 (1H, d, J =7.8 Hz, bpy H³), 8.64 (1H, d, J = 7.8 Hz, bpy H³), 8.26 (2H, m, bpy H⁴ and H^3), 8.18 (1H, d, J = 5.1 Hz, bpy H^6), 8.08–7.94 (7H, m, 2 Ph, 3bpy H^4 and 2bpy H^6), 7.84 (4H, m, 3 Ph and bpy H^5), 7.76 (1H, m, J = 1.5, 5.8 and 7.5 Hz, bpy H^5), 7.45 (1H, m, J = 1.5, 5.9 and 7.1 Hz, bpy H^5), 7.37 (1H, m, J = 1.3, 5.9 and 7.6 Hz, bpy H⁵). ES-MS m/z = 995 ({M + Na^{+}^{+} , 827 ({ $M - PF_6^{-}$ }^+). Crystals were obtained by slow diffusion of diethyl ether vapour into an acetone solution at 277 K.

Figure 1

View of the complex cation in salt (I) (35% probability displacement ellipsoids).

8537 independent reflections

 $R_{\rm int}=0.097$

 $\theta_{\rm max} = 27.5^{\circ}$

 $\begin{array}{l} h = -16 \rightarrow 15 \\ k = -30 \rightarrow 30 \end{array}$

 $l=-16\rightarrow 16$

5485 reflections with $I > 2\sigma(I)$

Crystal data

[RuCl(C₁₆H₁₃N₂)(C₁₀H₈N₂)₂](PF₆)₂ $D_{\rm r} = 1.735 {\rm Mg} {\rm m}^{-3}$ $M_r = 972.11$ Mo $K\alpha$ radiation Monoclinic, $P2_1/c$ Cell parameters from 8598 a = 12.687 (3) Åreflections b = 23.424 (17) Å $\theta = 2.9 - 27.5^{\circ}$ $\mu = 0.68 \text{ mm}^{-1}$ c = 12.956 (8) Å $\beta = 104.80 \ (4)^{\circ}$ T = 120 (2) K $V = 3722 (4) \text{ Å}^3$ Plate, dark purple $0.38 \times 0.22 \times 0.03$ mm Z = 4

Data collection

Nonius KappaCCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SORTAV; Blessing, 1995, 1997) $T_{\min} = 0.783, T_{\max} = 0.980$ 50 477 measured reflections

Refinement

 $\begin{array}{ll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F_o^2) + (0.0483P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.060 & + 5.3619P] \\ wR(F^2) = 0.128 & where $P = (F_o^2 + 2F_c^2)/3 \\ S = 1.03 & (\Delta/\sigma)_{max} < 0.001 \\ 8537 \mbox{ reflections } & \Delta\rho_{max} = 1.40 \mbox{ e } {\rm \AA}^{-3} \\ 651 \mbox{ parameters constrained } \\ \end{tabular}$

Table 1

Selected geometric parameters (Å, °).

Ru1-N32	2.029 (3)	Ru1-N31	2.057 (3)
Ru1-N22	2.038 (3)	Ru1-N1	2.125 (3)
Ru1-N21	2.053 (3)	Ru1-Cl1	2.4059 (16)
N32-Ru1-N22	91.32 (13)	N21-Ru1-N1	97.65 (13)
N32-Ru1-N21	98.91 (14)	N31-Ru1-N1	87.81 (13)
N22-Ru1-N21	78.99 (14)	N32-Ru1-Cl1	173.48 (10)
N32-Ru1-N31	79.60 (15)	N22-Ru1-Cl1	84.68 (10)
N22-Ru1-N31	95.61 (13)	N21-Ru1-Cl1	85.41 (11)
N21-Ru1-N31	174.40 (13)	N31-Ru1-Cl1	95.63 (11)
N32-Ru1-N1	92.09 (13)	N1-Ru1-Cl1	92.18 (10)
N22-Ru1-N1	175.56 (13)		

The two hexafluorophosphate anions were both disordered over two main sites [site-occupancy factors: (i) PF₆ 0.45 (2):0.55 (2) P1:P101; (ii) PF₆ 0.581 (5):0.419 (2) P11:P111]. To simplify the modelling, the P–F bonds were restrained to be similar in length, with angles close to 90°. These restraints have resulted in some closer contacts than expected. All H atoms were included in idealized positions, with C–H = 0.95 Å and $U_{iso}(H)$ values set at $1.2U_{eq}(C)$. The maximum electron-density peak is 2.23 Å from atom H39.

Data collection: *DENZO* (Otwinowski & Minor, 1997); cell refinement: *DENZO* and *COLLECT* (Hooft, 1998); data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*-3 (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank the EPSRC for funding crystallographic facilities and for a postdoctoral grant (GR/R81459).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Bosshard, Ch., Sutter, K., Prêtre, Ph., Hulliger, J., Flörsheimer, M., Kaatz, P. & Günter, P. (1995). Organic Nonlinear Optical Materials, Advances in Nonlinear Optics, Vol. 1. Amsterdam: Gordon and Breach.

- Busby, M., Liard, D. J., Motevalli, M., Toms, H. & Vlcek, A. Jr (2004). Inorg. Chim. Acta, 357, 167–176.
- Coe, B. J. (2004). In Comprehensive Coordination Chemistry II: from Biology to Nanotechnology, Vol. 9, edited by J. A. McCleverty & T. J. Meyer, Nonlinear Optical Properties of Metal Complexes, pp. 621–687. Oxford: Elsevier Pergamon.
- Coe, B. J., Beyer, T., Jeffery, J. C., Coles, S. J., Gelbrich, T., Hursthouse, M. B. & Light, M. E. (2000). J. Chem. Soc. Dalton Trans. pp. 797–803.
- Coe, B. J., Harris, J. A. & Brunschwig, B. S. (2002). J. Phys. Chem. A, 106, 897– 905.
- Coe, B. J., Harris, J. A. & Brunschwig, B. S. (2003). Dalton Trans. pp. 2384-2386.
- Coe, B. J., Harris, J. A., Harrington, L. J., Jeffery, J. C., Rees, L. H., Houbrechts S. & Persoons, A. (1998). *Inorg. Chem.* 37, 3391–3399.
- Coe, B. J., Jones, L. A., Harris, J. A., Sanderson, E. E., Brunschwig, B. S., Asselberghs, I., Clays, K. & Persoons, A. (2003). *Dalton Trans.* pp. 2335– 2341.
- Di Bella, S. (2001). Chem. Soc. Rev. 30, 355-366.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Lay, P. A., Sargeson, A. M. & Taube, H. (1986). Inorg. Synth. 24, 291–299.
- Nalwa, H. S. & Miyata, S. (1997). Editors. Nonlinear Optics of Organic Molecules and Polymers. Boca Raton: CRC Press.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.